Abstract
The modern picture of negative charge carriers on conjugated polymers invokes the formation of a singly occupied (spin-up/spin-down) level within the polymer gap and a corresponding unoccupied level above the polymer conduction band edge. The energy splitting between these sublevels is related to on-site Coulomb interactions between electrons, commonly termed Hubbard U. However, spectral evidence for both sublevels and experimental access to the U value is still missing. Here, we provide evidence by n-doping the polymer P(NDI2OD-T2) with [RhCp*Cp]2, [N-DMBI]2, and cesium. Changes in the electronic structure after doping are studied with ultraviolet photoelectron and low-energy inverse photoemission spectroscopies (UPS, LEIPES). UPS data show an additional density of states (DOS) in the former empty polymer gap while LEIPES data show an additional DOS above the conduction band edge. These DOS are assigned to the singly occupied and unoccupied sublevels, allowing determination of a U value of ∼1 eV.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.