Abstract

The optical response of a two-phase composite consisting of Au nanoparticles (AuNPs) in a nanocrystalline ZnO thin film matrix has been systematically studied and analyzed by the Bergman–Milton spectral density formalism. The real and imaginary parts of the effective dielectric function exhibited anomalous dispersion and absorption, respectively, at the characteristic localized surface plasmon resonance (LSPR) wavelength. A multilayer structure consisting of two AuNP–ZnO composite films separated by a thin ZnO film displayed a twofold increase in the absorption at LSPR (with negligible change in FWHM), which is attributed to the increase in the number density of the AuNPs resulting from the nanocrystalline nature of the ZnO film. The results have been used to correlate the spectral density function to the morphology of AuNPs in a ZnO matrix.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.