Abstract

The singularity of cylindrical or spherical coordinate systems at the origin imposes certain regularity conditions on the spectral expansion of any infinitely differentiable function. There are two efficient choices of a set of radial basis functions suitable for discretising the solution of a partial differential equation posed in either such geometry. One choice is methods based on standard Chebyshev polynomials; although these may be efficiently computed using fast transforms, differentiability to all orders of the obtained solution at the origin is not guaranteed. The second is the so-called one-sided Jacobi polynomials that explicitly satisfy the required behavioural conditions. In this paper, we compare these two approaches in their accuracy, differentiability and computational speed. We find that the most accurate and concise representation is in terms of one-sided Jacobi polynomials. However, due to the lack of a competitive fast transform, Chebyshev methods may be a better choice for some computationally intensive timestepping problems and indeed will yield sufficiently (although not infinitely) differentiable solutions provided they are adequately converged.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.