Abstract

Abstract The elliptic problems in semi-implicit nonhydrostatic atmospheric models are difficult. Typically, they are poorly conditioned, nonseparable, contain cross-derivative terms, and are often nonsymmetric. Here, the resulting linear system is solved using a preconditioned Krylov subspace method—the generalized conjugate residual (GCR) algorithm. A horizontal spectral preconditioner is developed as an alternative to a more standard and much simpler line Jacobi relaxation scheme. However, the efficacy of the spectral preconditioner requires neglecting the cross-derivative terms and homogenization (e.g., averaging) metric coefficients over the computational domain. Because such a compromise causes a substantial departure of the preconditioner from the original elliptic operator, it is not obvious a priori whether it leads to a competitive solver. The robustness of the proposed approach over a broad range of representative meteorological applications is evaluated, in the context of a three-time-level sem...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.