Abstract
We investigate spectral functions of matter-gauge theories that are asymptotically free in the ultraviolet and display a Banks-Zaks conformal fixed point in the infrared. Using perturbation theory, Callan-Symanzik resummations, and UV-IR connecting renormalization group trajectories, we analytically determine the gluon, quark, and ghost propagators in the entire complex momentum plane. At weak coupling, we find that a K\"all\'en-Lehmann spectral representation of propagators is achieved for all fields, and determine suitable ranges for gauge-fixing parameters. At strong coupling, a proliferation of complex conjugated branch cuts renders a causal representation impossible. We also derive relations for scaling exponents that determine the presence or absence of propagator nonanalyticities. Further results include spectral functions for all fields up to five loop order, bounds on the conformal window, and an algorithm to find running gauge coupling analytically at higher loops. Implications of our findings and extensions to other theories are discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.