Abstract

Direct numerical simulations with up to ${4096}^{2}$ resolution are performed to address the question of universality of statistical properties of the enstrophy cascade in homogeneous two-dimensional turbulence driven by large-scale Gaussian white-in-time noise. Data with different Reynolds numbers are compared with each other. The energy spectrum is found to be very close to 1/${\mathit{k}}^{3}$. It is shown that the primary contribution to the enstrophy transfer function comes from wave-number triads with one small leg and two long ones, corresponding to wave numbers in the inertial range.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.