Abstract

Stainless steel material samples with different surface roughness values were investigated to determine their spectral directional emissivity at elevated temperatures up to 1200 K in the visible to near-infrared wavelength range and in the infrared around . The emissivity measurements were accomplished by measuring the radiation from an appropriately designed test specimen in a furnace heating facility with optical access. Blackbody radiation, needed to determine the emissivity, was generated through a cavity in the specimen itself. During the time of measurement, the sample was shielded from the furnace radiation through a retractable cold radiation shield. In the visible to near-infrared wavelength range, the specimen was imaged on the entrance slit of a 500 mm focal length spectrometer, enabling simultaneous measurement of a sample normal to the viewing direction, the blackbody cavity, and a tilted sample. In the infrared, a FLIR camera was used to image filtered radiation around . Surface roughness increased emissivity significantly in comparison to polished samples. The actual roughness values only had minor effects. Preoxidation of the samples caused a significant increase in emissivity for polished surfaces but had only minor effects for rough samples. The measured emissivities show only a weak variation with temperature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.