Abstract

Spectral decomposition provides a canonical representation of an operator over a vector space in terms of its eigenvalues and eigenfunctions. The canonical form often facilitates discussions which, otherwise, would be complicated and involved. Spectral decomposition is of fundamental importance in many applications. The well-known GLR theory generalizes the classical result of eigendecomposition to matrix polynomials of higher degrees, but its development is based on complex numbers. This paper modifies the GLR theory for the special application to real symmetric quadratic matrix polynomials, Q( A) = MX2 + CX + K, M nonsingular, subject to the specific restriction that all matrices in the representation be realvalued. It is shown that the existence of the real spectral decomposition can be characterized through the notion of real standard pair which, in turn, can be constructed from the spectral data. Applications to a variety of challenging inverse problems are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.