Abstract
We study the spectral statistics for extended yet finite quasi-one-dimensional systems, which undergo a transition from periodicity to disorder. In particular, we compute the spectral two-point form factor, and the resulting expression depends on the degree of disorder. It interpolates smoothly between the two extreme limits-the approach to Poissonian statistics in the (weakly) disordered case, and the universal expressions derived in T. Dittrich, B. Mehlig, H. Schanz, and U. Smilansky, Chaos Solitons Fractals 8, 1205 (1997); Phys. Rev. E 57, 359 (1998); B. D. Simons and B. L. Altshuler, Phys. Rev. Lett. 70, 4063 (1993); and N. Taniguchi and B. L. Altshuler, ibid. 71, 4031 (1993) for the periodic case. The theoretical results agree very well with the spectral statistics obtained numerically for chains of chaotic billiards and graphs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.