Abstract

We introduce a new framework that yields spectral bounds on norms of functions of transition maps for finite, homogeneous Markov chains. The techniques employed work for bounded semigroups, in particular for classical as well as for quantum Markov chains and they do not require additional assumptions like detailed balance, irreducibility or aperiodicity. We use the method in order to derive convergence bounds that improve significantly upon known spectral bounds. The core technical observation is that power-boundedness of transition maps of Markov chains enables a Wiener algebra functional calculus in order to upper bound any norm of any holomorphic function of the transition map. Finally, we discuss how general detailed balance conditions for quantum Markov processes lead to spectral convergence bounds.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.