Abstract

Absorption features on Phobos and Deimos in the visible/near infrared wavelength region (0.4–3.9μm) are mapped using observations from the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM). Fe2+ electronic absorptions diagnostic of olivine and pyroxene are not detected. A broad absorption centered around 0.65μm within the red spectral units of both moons is detected, and this feature is also evident in telescopic, Pathfinder, and Phobos-2 observations of Phobos. A 2.8μm metal–OH combination absorption on both moons is also detected in the CRISM data, and this absorption is shallower in the Phobos blue unit than in the Phobos red unit and Deimos. The strength, position, and shape of both of the 0.65μm and 2.8μm absorptions are similar to features seen on red-sloped, low-albedo primitive asteroids. Two end-member hypotheses are presented to explain the spectral features on Phobos and Deimos. The first invokes the presence of highly desiccated Fe-phyllosilicate minerals indigenous to the bodies, and the second invokes Rayleigh scattering and absorption of small iron particles formed by exogenic space weathering processing, coupled with implantation of H from solar wind. Both end-member hypotheses may play a role, and in situ exploration will be needed to ultimately determine the underlying causes for the pair of spectral features observed on Phobos and Deimos.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.