Abstract

In ultrasound elasticity imaging, strain decorrelation is a major source of error in displacements estimated using correlation techniques. This error can be significantly decreased by reducing the correlation kernel. Additional gains in signal-to-noise ratio (SNR) are possible by filtering the correlation functions prior to displacement estimation. Tradeoffs between spatial resolution and estimate variance are discussed, and estimation in elasticity imaging is compared to traditional time-delay estimation. Simulations and experiments on gel-based phantoms are presented. The results demonstrate that high resolution, high SNR strain estimates can be computed using small correlation kernels (on the order of the autocorrelation width of the ultrasound signal) and correlation filtering.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.