Abstract

We study speckle decorrelation effects in connection with conventional vortex metrology techniques. Our proposal is based on processing speckled images recorded by using two different experimental set-ups. In both schemes two laterally displaced patterns are generated: one scheme allows for obtaining undecorrelated speckle distributions and the other for decorrelated ones. Vortex networks associated with speckle patterns are analyzed by employing the usual tools developed for vortex metrology. For each recorded image, a 2D pseudo-phase map is generated on the basis of the Reisz transform. Then the vortices are located, and parameterized in terms of their topological charge, eccentricity, vorticity and angles between the zero crossing lines from the real and the imaginary parts of the analytical signal. After tracking the homologous vortices onto the maps, the histograms corresponding to the coordinate displacements are analyzed. We show that histograms interpretation is prone to failure due to its high sensitivity to decorrelation. Experimental evidences are presented to support the restrictions imposed by decorrelation of actual speckles due to uniform in-plane displacements.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.