Abstract
Previous studies in our laboratory had demonstrated alterations in the physical state of membrane proteins in erythrocytes in Huntington's disease. In order to assess the specificity of our findings, the results of electron spin resonance studies of protein and lipid components, scanning electron-microscopic studies, enzymatic analyses of membrane-bound sodium plus potassium stimulated, magnesium-dependent adenosine triphosphatase and protein kinase, and cell deformability studies of erythrocyte membranes have been performed in the neurological disorders, Huntington's disease, Friedreich's ataxia, Alzheimer's disease, amyotrophic lateral sclerosis, and myotonic and Duchenne muscular dystrophy. Comparison of the results revealed that alterations in the biophysical and biochemical states of erythrocyte membranes in each disorder are specific to the particular disease state with the exception of those in Friedreich's ataxia and Alzheimer's disease. In the latter instance, the clinical and pathological alterations suggest that these two diseases have different primary defects. Our studies suggest that the molecular basis of each disease is different. In addition, the results suggest that biophysical and biochemical investigations of extraneural tissue in Huntington's disease and other neurological disorders have the potential of clarifying the molecular mechanisms by which these diseases arise.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.