Abstract

The properties of proteins at interfaces are important to many processes as well as in soft matter materials such as aqueous foam. Particularly, the protein interfacial behavior is strongly linked to different factors like the solution pH or the presence of electrolytes. Here, the nature of the electrolyte ions can significantly modify the interfacial properties of proteins. Therefore, molecular level studies on interfacial structures and charging states are needed. In this work, we addressed the effects of Y3+ and Nd3+ cations on the adsorption of the whey protein β-lactoglobulin (BLG) at air-water interfaces as the function of electrolyte concentration. Both cations caused very similar but dramatic changes at the interface and in the bulk solution. Here, measurements of the electrophoretic mobility and with vibrational sum-frequency generation (SFG) spectroscopy were applied and consistently showed a reversal of the BLG net charge at remarkably low ion concentrations of 30 (bulk) and 40 (interface) μM of Y3+ or Nd3+ for a BLG concentration of 15 μM. SFG spectra of carboxylate stretching vibrations from Asp or Glu residues of interfacial BLG showed significant changes in the resonance frequency, which we associate to specific and efficient binding of Y3+ or Nd3+ ions to the proteins carboxylate groups. Characteristic reentrant condensation for BLG moieties with bound trivalent ions was found in a broad concentration range around the point of zero net charge. The highest colloidal stability of BLG was found for ion concentrations <20 μM and >50 μM. Investigations on macroscopic foams from BLG solutions revealed the existence of structure-property relations between the interfacial charging state and the foam stability. In fact, a minimum in foam stability at 20 μM ion concentration was found when the interfacial net charge was negligible. At this concentration, we propose that the persistent BLG molecules and weakly charged BLG aggregates drive foam stability, while outside the bulk reentrant zone the electrostatic disjoining pressure inside foam lamellae dominates foam stability. Our results provide new information on the charge reversal at the liquid-gas interface of protein/ion dispersions. Therefore, we see our findings as an important step in the clarification of reentrant condensation effects at interfaces and their relevance to foam stability.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.