Abstract

AbstractThe generation of singlet oxygen (1O2) during photodynamic therapy is limited by the precise cooperation of light, photosensitizer, and oxygen, and the therapeutic efficiency is restricted by the elevated glutathione (GSH) levels in cancer cells. Herein, we report that an ultrathin two‐dimensional metal–organic framework of Cu‐TCPP nanosheets (TCPP=tetrakis(4‐carboxyphenyl)porphyrin) can selectively generate 1O2 in a tumor microenvironment. This process is based on the peroxidation of the TCPP ligand by acidic H2O2 followed by reduction to peroxyl radicals under the action of the peroxidase‐like nanosheets and Cu2+, and their spontaneous recombination reaction by the Russell mechanism. In addition, the nanosheets can also deplete GSH. Consequently, the Cu‐TCPP nanosheets can selectively destroy tumor cells with high efficiency, constituting an attractive way to overcome current limitations of photodynamic therapy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.