Abstract

AimsThe aim of this study was to determine the specific spatiotemporal activation patterns of face perception in the fusiform gyrus (FG). The FG is a key area in the specialized brain system that makes possible the recognition of face with ease and speed in our daily life. Characterization of FG response provides a quantitative method for evaluating the fundamental functions that contribute to non-verbal communication in various psychosomatic paradigms.MethodsThe MEG signal was recorded during passive visual stimulus presentation with three stimulus types – Faces, Hands and Shoes. The stimuli were presented separately to the central and peripheral visual fields. We performed statistical parametric mapping (SPM) analysis of tomographic estimates of activity to compare activity between a pre- and post-stimulus period in the same object (baseline test), and activity between objects (active test). The time course of regional activation curves was analyzed for each stimulus condition.ResultsThe SPM baseline test revealed a response to each stimulus type, which was very compact at the initial segment of main MFG170. For hands and shoes the area of significant change remains compact. For faces the area expanded widely within a few milliseconds and its boundaries engulfed the other object areas. The active test demonstrated that activity for faces was significantly larger than the activity for hands. The same face specific compact area as in the baseline test was identified, and then again expanded widely. For each stimulus type and presentation in each one of the visual fields locations, the analysis of the time course of FG activity identified three components in the FG: MFG100, MFG170, and MFG200 – all showed preference for faces.ConclusionEarly compact face-specific activity in the FG expands widely along the occipito-ventral brain within a few milliseconds. The significant difference between faces and the other object stimuli in MFG100 shows that processing of faces is already differentiated from processing of other objects within 100 ms. Standardization of the three face-specific MEG components could have diagnostic value for the integrity of the initial process of non-verbal communication in various psychosomatic paradigms.

Highlights

  • The analysis revealed that the response within 100 ms (MFG100) was stronger for face stimuli compared to other objects, peaking at 73.0 ms, and 65.0 ms, for central (F(2, 12) = 13.15, p < 0.001) and peripheral presentations (F(2, 12) = 11.14, p < 0.05), respectively

  • In the expected face selectivity at MFG170, the amplitude for the central presentation of face stimuli became significantly stronger than the other objects at 135.0 ms with a main effect of Stimulus type according to ANOVA (F(2, 12) = 8.76, p < 0.005), and showed an amplitude peak at 153.0 ms

  • We found the three specific components of face perception in the fusiform gyrus (FG) area

Read more

Summary

Methods

The MEG signal was recorded during passive visual stimulus presentation with three stimulus types – Faces, Hands and Shoes. The stimuli were presented separately to the central and peripheral visual fields. We performed statistical parametric mapping (SPM) analysis of tomographic estimates of activity to compare activity between a pre- and post-stimulus period in the same object (baseline test), and activity between objects (active test). The time course of regional activation curves was analyzed for each stimulus condition

Results
Conclusion
Findings
19. Fisher NI
23. Schultz RT
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.