Abstract

Diethylenetriaminepentaacetic acid (DTPA) is a chelating agent that is used to facilitate the elimination of radionuclides such as americium from contaminated individuals. Its primary site of action is in the blood, where it competes with various biological ligands, including transferrin and albumin, for the binding of radioactive metals. To evaluate the chelation potential of DTPA under these conditions, the competitive binding of Am between DTPA and plasma proteins was studied in rat, beagle, and human plasma in vitro. Following incubation of DTPA and Am in plasma, the Am-bound ligands were fractionated by ultrafiltration and ion-exchange chromatography, and each fraction was assayed for Am content by gamma scintillation counting. Dose response curves of DTPA for Am binding were established, and these models were used to calculate the 90% maximal effective concentration, or EC90, of DTPA in each plasma system. The EC90 were determined to be 31.4, 15.9, and 10.0 μM in rat, beagle, and human plasma, respectively. These values correspond to plasma concentrations of DTPA that maximize Am chelation while minimizing excess DTPA. Based on the pharmacokinetic profile of DTPA in humans, after a standard 30 μmol kg intravenous bolus injection, the plasma concentration of DTPA remains above EC90 for approximately 5.6 h. Likewise, the effective duration of DTPA in rat and beagle were determined to be 0.67 and 1.7 h, respectively. These results suggest that species differences must be considered when translating DTPA efficacy data from animals to humans and offer further insights into improving the current DTPA treatment regimen.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.