Abstract

BackgroundIn this study, we investigate species limits in the cyanobacterial lichen genus Rostania (Collemataceae, Peltigerales, Lecanoromycetes). Four molecular markers (mtSSU rDNA, β-tubulin, MCM7, RPB2) were sequenced and analysed with two coalescent-based species delimitation methods: the Generalized Mixed Yule Coalescent model (GMYC) and a Bayesian species delimitation method (BPP) using a multispecies coalescence model (MSC), the latter with or without an a priori defined guide tree.ResultsSpecies delimitation analyses indicate the presence of eight strongly supported candidate species. Conclusive correlation between morphological/ecological characters and genetic delimitation could be found for six of these. Of the two additional candidate species, one is represented by a single sterile specimen and the other currently lacks morphological or ecological supporting evidence.ConclusionsWe conclude that Rostania includes a minimum of six species: R. ceranisca, R. multipunctata, R. occultata 1, R. occultata 2, R. occultata 3, and R. occultata 4,5,6. Three distinct Nostoc morphotypes occur in Rostania, and there is substantial correlation between these morphotypes and Rostania thallus morphology.

Highlights

  • In this study, we investigate species limits in the cyanobacterial lichen genus Rostania (Collemataceae, Peltigerales, Lecanoromycetes)

  • When R. occultata 5 is tested in the 8 species Bayesian Phylogenetics and Phylogeography (BPP) guided and unguided analyses context, it was supported as a distinct species under all prior settings (Fig. 3) but not when tested within the unguided 13 species context (Figs. 4-5)

  • We conclude that Rostania includes a minimum of six species which will be formally treated in a taxonomical paper: R. ceranisca, R. multipunctata, R. occultata 1, R. occultata 2, R. occultata 3, and R. occultata 4,5,6

Read more

Summary

Introduction

We investigate species limits in the cyanobacterial lichen genus Rostania (Collemataceae, Peltigerales, Lecanoromycetes). Common basidiomycete yeasts have been suggested to influence thallus morphology to Košuthová et al BMC Evolutionary Biology (2020) 20:115 some extent, but their role in the symbiosis is still hypothetical [14,15,16]. It has been known for quite some time that one mycobiont may form very dissimilar lichen thalli with very different photobionts [17,18,19]. While it is clear from several studies that lichen fungi frequently recruit several distinct lineages of photobionts [20,21,22,23,24], the impact of different strains of a photobiont genus on the resulting thallus morphology is much less understood

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.