Abstract

The speciation of uranyl ions in fulvic acid (FA) and humic acid (HA), based on models of larger sizes, is systematically studied using density functional theory (DFT). Four uranyl binding sites are suggested for FA and based on their energetics, the preferential binding sites are proposed. The computed binding sites include two chelating types, one through the carboxylate group and one via the hydroxo group. A systematic way to attain the possible structure for Stevenson's HA model is carried out using a combined molecular dynamics (MD) and quantum chemical approach. Calculated structures and energetics reveal many interesting features such as conformational flexibility of HA and binding of hydrophobic molecules in agreement with the experimental suggestions. Five potential binding sites are proposed for uranyl binding to HA and the calculated geometries correlate nicely with the experimental observations. Our binding energy calculations reveal that apart from uranyl binding at the carboxylate functional group, binding at other functional groups such as those involving quinone and hydroxo sites are also possible. Finally, based on our cluster calculations the strength of uranyl binding to HAs and FAs is largely influenced by neighbouring groups via hydrogen bonding interactions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.