Abstract

Speech perception requires cortical mechanisms capable of analysing and encoding successive spectral (frequency) changes in the acoustic signal. To study temporal speech processing in the human auditory cortex, we recorded intracerebral evoked potentials to syllables in right and left human auditory cortices including Heschl's gyrus (HG), planum temporale (PT) and the posterior part of superior temporal gyrus (area 22). Natural voiced /ba/, /da/, /ga/) and voiceless (/pa/, /ta/, /ka/) syllables, spoken by a native French speaker, were used to study the processing of a specific temporally based acoustico-phonetic feature, the voice onset time (VOT). This acoustic feature is present in nearly all languages, and it is the VOT that provides the basis for the perceptual distinction between voiced and voiceless consonants. The present results show a lateralized processing of acoustic elements of syllables. First, processing of voiced and voiceless syllables is distinct in the left, but not in the right HG and PT. Second, only the evoked potentials in the left HG, and to a lesser extent in PT, reflect a sequential processing of the different components of the syllables. Third, we show that this acoustic temporal processing is not limited to speech sounds but applies also to non-verbal sounds mimicking the temporal structure of the syllable. Fourth, there was no difference between responses to voiced and voiceless syllables in either left or right areas 22. Our data suggest that a single mechanism in the auditory cortex, involved in general (not only speech-specific) temporal processing, may underlie the further processing of verbal (and non-verbal) stimuli. This coding, bilaterally localized in auditory cortex in animals, takes place specifically in the left HG in man. A defect of this mechanism could account for hearing discrimination impairments associated with language disorders.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.