Abstract
The direct problem of dynamics in two dimensions is modeled by a nonlinear second-order partial differential equation, which is therefore difficult to be solved. The task may be made easier by adding some constraints on the unknown function γ = f y /f x , where f(x, y) = c is the monoparametric family of orbits traced in the xy Cartesian plane by a material point of unit mass, under the action of a given potential V(x, y). If the function γ is supposed to verify a linear first-order partial differential equation, for potentials V satisfying a differential condition, γ can be found as a common solution of certain polynomial equations. The various situations which can appear are discussed and are then illustrated by some examples, for which the energy on the members of the family, as well as the region where the motion takes place, are determined. One example is dedicated to a Henon—Heiles type potential, while another one gives rise to families of isothermal curves (a special case of orthogonal families). The connection between the inverse/direct problem of dynamics and the possibility of detecting integrability of a given potential is briefly discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.