Abstract

AbstractThis study has addressed the spatiotemporal distribution of the daily rainfall concentration and its relation to the teleconnection patterns across the Mediterranean (MR). Daily concentration index (CI) and the ordered n index ( nor) are used at annual time scale to reveal the statistical structure of precipitation across the MR based on 233 daily rainfall series for the period 1975–2015. Eight teleconnection patterns, North Atlantic Oscillation (NAO), Mediterranean Oscillation (MO), Western Mediterranean Oscillation (WeMO), Upper‐Level Mediterranean Oscillation index (ULMO), East Atlantic (EA) pattern, East Atlantic/West Russia (EATL/WRUS) pattern, Scandinavia (SCAND) pattern and Southern Oscillation (SO) at annual time scale are selected. The spatiotemporal patterns in precipitation concentration indices, annual precipitation and their teleconnections with previous large‐scale circulations are investigated. Results show a strong connection between the CI and the nor (r = 0.70, p < .05) which present the same relative areas of high and low concentration. The annual values range from 0.57 to 0.70 for CI and 0.49 to 0.71 for nor index which show a high daily precipitation concentration across the MR. Trend analysis demonstrated mostly significant increasing trends for both indices. This increase is mainly found in south France, northern coastlands of the Iberian Peninsula (IP), Greece and Tunisia. An inverse relationship between the number of rainy days and concentration indices is evident. Both of WeMO and MO can play an important role in modulating rainfall in the northwest Mediterranean. The positive EATL/WRUS phase is mainly connected with positive precipitation mean anomalies in the eastern Mediterranean and vice versa in the west. The high daily precipitation concentration values over south France, northeast Spain, Croatia and Tunisia are linked to the low values of WeMO and high values of EA. These results could pave the way for new possibilities regarding the projection of precipitation concentration and precipitation irregularity in downscaling techniques.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.