Abstract

Mountainous areas are susceptible to disasters; the frequent occurrence of disasters drives the changes in ecosystem service value (ESV) and also brings certain ecological risk, which further increases the incidence of disasters. However, few scholars have investigated the spatiotemporal correlation between the ESV of disaster-prone mountainous areas and ecological risk index (ERI) with basin as the unit. This paper aims to clarify the spatial relationship between ESV and ERI under the changes of land use. Taking the upper reaches of the Minjiang River as the study area, the authors collected the land use data of 2000–2020, estimated ESV by the value equivalent factor per unit area method, and constructed the ERI. On this basis, the relationship between ESV and ERI was investigated in details. The results show the following: (1) From 2000 to 2020, the total ESV exhibited a fluctuating upward trend. The spatial distribution of ESV was greatly affected by slope and altitude; an important reason for the rising ESV in the study area is the increase of forest area and water area. (2) The upper reaches of the Minjiang River had a generally low ERI and relatively good overall ecoenvironment. After 2010, however, the ecological risk continued to rise. Most of the strongly high risk areas are areas with frequent human activities, such as low-altitude areas and river banks. (3) There is a spatial correlation and coupling between ESV and ERI in the study area; i.e., the strongly high ESV areas generally had a low ecological risk. The correlation intensified with the elapse of time. The changes in the service value of regional ecosystems driven by unreasonable land use will have a great impact on the ecoenvironment. By clarifying the spatiotemporal relationship between ESV and ERI, this research provides theoretical basis and data support to the formulation of ecoenvironmental restoration and protection plans for the upper reaches of the Minjiang River and to the coordinated development between society, economy, and ecoenvironment in the region.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.