Abstract

BackgroundThromboinflammatory processes modulate the complex pathophysiology of cerebral ischemia-reperfusion (I/R) injury in ischemic stroke, but the exact underlying mechanisms remain poorly understood. Emerging evidence indicates that neutrophil extracellular traps (NETs) might play an important role in the thromboinflammatory cascade. In addition, the link between von Willebrand factor (VWF) and neutrophil recruitment in the ischemic brain might promote thromboinflammation, possibly by the formation of NETs. ObjectivesTo study NET formation in a murine model of cerebral I/R injury in ischemic stroke. MethodsThe filament–induced transient middle cerebral artery occlusion model was used to induce 60 minutes of focal cerebral ischemia after which reperfusion was allowed. At different time points postischemia, NETs were identified in the ischemic mouse brain using quantitative immunofluorescence microscopy. ResultsNETs could be identified in the ipsilateral brain hemisphere. Interestingly, NETs could already be detected at 6 hours poststroke. Their presence increased at 12 hours, was highest at 24 hours, and decreased again 48 hours postischemia. Remarkably, NETs were predominantly localized within the brain vasculature postischemia, suggesting that NETs play a role in secondary microthrombosis. Strikingly, NET formation was significantly decreased in VWF–deficient mice compared to littermate wild-type mice 24 hours postischemia, indicating a possible role for VWF in promoting NETosis in the ischemic brain. ConclusionThis study identified the spatiotemporal profile of NET formation in a mouse model of cerebral I/R injury in ischemic stroke. NETs, potentially in combination with VWF, might be attractive targets for the development of novel therapeutic strategies in ischemic stroke treatment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.