Abstract
In this paper, we study a delayed host-generalist parasitoid diffusion model subject to homogeneous Dirichlet boundary conditions, where generalist parasitoids are introduced to control the invasion of the hosts. We construct an explicit expression of positive steady-state solution using the implicit function theorem and prove its linear stability. Moreover, by applying feedback time delay [Formula: see text] as the bifurcation parameter, spatially inhomogeneous Hopf bifurcation near the positive steady-state solution is proved when [Formula: see text] is varied through a sequence of critical values. This finding implies that feedback time delay can induce spatially inhomogeneous periodic oscillatory patterns. The direction of spatially inhomogeneous Hopf bifurcation is forward when parameter [Formula: see text] is sufficiently large. We present numerical simulations and solutions to further illustrate our main theoretical results. Numerical simulations show that the period and amplitude of the inhomogeneous periodic solution increase with increasing feedback time delay. Our theoretical analysis results only hold for parameter [Formula: see text] when it is sufficiently close to 1, whereas numerical simulations suggest that spatially inhomogeneous Hopf bifurcation still occurs when [Formula: see text] is larger than 1 but not sufficiently close to 1.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.