Abstract
A comparative analysis was conducted using three types of data-mining models produced from Moderate Resolution Imaging Spectroradiometer (MODIS) Terra Surface Reflectance 1-day or 8-day composite images to estimate chlorophyll-a (chl-a) concentrations in Lake Okeechobee, Florida. To understand the pros and cons of these three models, a genetic programming (GP) model was compared to an artificial neural network (ANN) model and multiple linear regression (MLR) model with respect to two different data sets related to model formulation. The first data set included the MODIS Terra bands from 1 to 7; the second data set extended the first data set by adding environmental parameters such as Secchi disc depth (SDD), total suspended solids (TSS), wind speed, water level, rainfall and air temperature collected around the lake in 2003 and 2004. The GP algorithm, which has an advantage in machine learning allowing us to select the appropriate input parameters that significantly impact the prediction accuracy, outperformed the other two models based on four statistical indices. Specifically, the GP modelling outputs revealed interesting determinations of chl-a concentrations for MODIS bands 3, 5, 6 and 7, corresponding to wavelengths 459–479, 1230–1250, 1628–1652 and 2105–2155 nm, respectively. The number of training data points is limited; therefore, the inclusion of additional environmental variables cannot improve the prediction accuracy of the GP-derived chl-a concentrations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.