Abstract
Spatio-temporal gait characteristics (step and stride length, stride frequency, duty factor) were determined for the hind-limb cycles of nine bonobos (Pan paniscus) walking quadrupedally and bipedally at a range of speeds. The data were recalculated to dimensionless quantities according to the principle of dynamic similarity. Lower leg length was used as the reference length. Interindividual variability in speed modulation strategy of bonobos appears to be low. Compared to quadrupedal walking, bipedal bonobos use smaller steps to attain a given speed (differences increase with speed), resulting in shorter strides at a higher frequency. In the context of the ("hybrid") dynamic pattern approach to locomotion (Latach, 1998) we argue that, despite these absolute differences, intended walking speed is the basic control variable which elicits both quadrupedal and bipedal walking kinematics in a similar way. Differences in the initial status of the dynamic system may be responsible for the differences in step length between both gaits. Comparison with data deduced from the literature shows that the effects of walking speed on stride length and frequency are similar in bonobos, common chimpanzees, and humans. This suggests that (at least) within extant homininae, spatio-temporal gait characteristics are highly comparable, and this in spite of obvious differences in mass distribution and bipedal posture.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.