Abstract
Abstract. Comparisons of observed and modeled climate behavior often focus on central tendencies, which overlook other important distributional characteristics related to quantiles and variability. We propose two permutation procedures, standard and stratified, for assessing the accuracy of climate models. Both procedures eliminate the need to model cross-correlations in the data, encouraging their application in a variety of contexts. By making only slightly stronger assumptions, the stratified procedure dramatically strengthens the ability to detect a difference in the distribution of observed and climate model data. The proposed procedures allow researchers to identify potential model deficiencies over space and time for a variety of distributional characteristics, providing a more comprehensive assessment of climate model accuracy, which will hopefully lead to further model refinements. The proposed statistical methodology is applied to temperature data generated by the state-of-the-art North American Coordinated Regional Climate Downscaling Experiment (NA-CORDEX).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Advances in Statistical Climatology, Meteorology and Oceanography
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.