Abstract
Arbitrary moving object detection including vehicles and human beings in the real environment, such as protected and sensitive areas, is challenging due to the arbitrary deformation and directions caused by shaky camera and wind. This work aims at adopting a spatio-temporal approach for classifying arbitrarily moving objects. The proposed method segments foreground objects from the background using the frame difference between the median frame and individual frames. This step outputs several different foreground information. The mean of foreground images is computed, which is referred to as the mean activation map. For the mean activation map, the method employs the fast Fourier transform, which outputs amplitude and frequencies. The mean of frequencies is computed for moving objects in using activation maps of temporal frames, which is considered as a frequency feature vector. The features are normalized to avoid the problems of imbalanced features and class sizes. For classification, the work uses 10-fold cross-validation to choose the number of training and testing samples and the random forest classifier is used for the final classification of arbitrary moving and static videos. For evaluating the proposed method, we construct our dataset, which contains videos of static and arbitrarily moving objects caused by shaky cameras and wind. The results of the video dataset show that the proposed method achieves the state-of-the-art performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.