Abstract

Three spatio-temporal neurophysiological patterns involved in visual selective attention were identified from the human event-related potentials (ERPs) by a novel common spatial pattern (CSP) decomposition method and the standardized low resolution brain electromagnetic tomography (sLORETA). In the experiment, stimuli were rapidly presented randomly to the right or left visual fields while subjects attended to one visual field at a time (Clark, Hillyard, 1996. Spatial selective attention affects early extrastriate but not striate components of the visual evoked potential. J. Cogn. Neurosci. 8, 387–402). The spatial patterns indicated that visual cortex, prefrontal cortex (PFC), anterior cingulate cortex (ACC) and posterior parietal cortex (PPC) were involved in the control of top-down attention. The temporal waveforms indicated that contralateral PFC and PPC were activated synchronously at about 150 ms after the stimulus onset, with early attention effects only occurring in PFC, and the PPC was activated earlier than that of PFC during 200–260 ms. The results imply that humans adopt different allocation strategies for resources in visual attention and un-attention situations. For attention case, visual cortex consumes the most resources and for non-attention situation, the ACC and PPC consume the most resources.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.