Abstract
Increases in nutrient loadings to waterways over the past four decades have led to widespread eutrophication and water quality impairments across China. Understanding the spatial, interannual and long-term variations in nutrient loadings and associated drivers at the national scale is crucial for developing effective nutrient reduction strategies. However, the controls on, and spatiotemporal variations in, nutrient fluxes remain a problem from both an academic and management perspective. This study provides spatially extensive and temporally contiguous estimates of changes in riverine total nitrogen (TN), ammonia nitrogen (NH3–N) and total phosphorus (TP) fluxes for continental area of China based on machine learning stack models and empirical modeling over the period from 1980 to 2018. Results reveal considerable spatial, interannual and long-term variability in annual TN, NH3–N and TP fluxes, with spatial variations in average TN and NH3–N fluxes primarily driven by net anthropogenic nitrogen inputs. Interannual variability is dominated by precipitation across continental areas of China. Spatial variability in the estimated average annual TP flux in the undeveloped western and the developed middle east regions of China are primarily controlled by net anthropogenic phosphorus inputs and precipitation, respectively. We found that TN, NH3–N and TP fluxes increased from 1980 to 2018 in watersheds in East China; the national mean annual TN, NH3–N and TP fluxes increased before 2015 and decreased after 2015. This study illustrates the important role of precipitation and temperature variability in controlling the spatial, interannual and long-term variability of nutrient fluxes, and indicates that the influence of the meteorological conditions on annual loadings is needed when designing watershed nutrient reduction or management strategies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.