Abstract

Electrical waves circulating around an obstacle in cardiac tissue are subject to a generic oscillatory instability. In a one-dimensional ring geometry this instability can produce both quasiperiodic and spatiotemporally chaotic oscillations while in a two-dimensional sheet of cardiac tissue it can lead to spiral wave breakup. We present a control scheme to prevent this instability in these two geometries which is based on applying a feedback current at a discrete set of control points during the repolarizing phase of the action potential. The feasibility of this scheme is demonstrated via simulations of a two-variable model of excitable media with restitution and of the Beeler-Reuter model of ventricular action potential.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.