Abstract

Climate changes are affecting plant growth, ecosystem evolution, hydrological processes, and water resources in the Three-River Source Regions (TRSR). Daily ground surface temperature (GST) and air temperature (Ta) recordings from 12 meteorological stations illustrated trends and characteristics of extreme GST and Ta in the TRSR during 1980–2013. We used the Mann-Kendall test and Sen’s slope estimate to analyze 12 temperature extreme indices as recommended by the Expert Team on Climate Change Detection and Indices (ETCCDI). The mean annual ground surface temperatures (MAGST) are 2.4–4.3 °C higher than the mean annual air temperatures (MAAT) in the TRSR. The increasing trends of the MAGST are all higher than those of the MAAT. The multi-year average maximum GST (28.1 °C) is much higher than that of the Ta (7.6 °C), while the minimum GST (−8.7 °C) is similar to that of the minimum Ta (−6.9 °C). The minimum temperature trends are more significant than those of the maximum temperature and are consistent with temperature trends in other regions of China. Different spatiotemporal patterns of GST extremes compared to those of Ta may result from greater warming of the ground surface. Consequently, the difference between the GST and Ta increased. These findings have implications for variations of surface energy balance, sensible heat flux, ecology, hydrology, and permafrost.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.