7-days of FREE Audio papers, translation & more with Prime
7-days of FREE Prime access
7-days of FREE Audio papers, translation & more with Prime
7-days of FREE Prime access
https://doi.org/10.3390/f14091835
Copy DOIJournal: Forests | Publication Date: Sep 9, 2023 |
Citations: 8 | License type: CC BY 4.0 |
The Tibet Plateau of Qinghai supports complex vegetation types that are ecologically fragile and sensitive to climatic factors. Therefore, it is important to understand the changes in vegetation and the factors responsible for these changes and to maintain the ecosystem balance and promote sustainable development in the region. Therefore, this paper is based on annual SPOT/VEG NDVI (Normalized Difference Vegetation Index) data, land use data, topographic data, temperature data, and precipitation data from 1999 to 2019. The spatiotemporal variation in the NDVI over the Tibetan Plateau in the last 21 years and its response to different driving factors were investigated by using the Theil–Sen slope method, Mann–Kendall test, partial correlation analysis, and geographical detector method. The results showed that (1) the vegetation coverage on the Qinghai–Tibet Plateau showed an increasing trend from 1999 to 2019, with increases in approximately 67.00% of the plateau area. (2) The spatial differences in vegetation coverage were large; notably, low-density vegetation areas decreased obviously, moderate-density vegetation areas accounted for approximately 50% of the total area, high-density vegetation areas were the least common, and the overall growth rate was significant. (3) The NDVI was positively correlated with temperature and precipitation, and a positive correlation was observed in more than 66% of the region. (4) The order of the influence of single driving factors on the NDVI was as follows: precipitation > soil type > altitude > temperature > gradient > slope > population density > GDP. (5) The combined effect of the factors was significantly higher than that of single driving factors, with a notable nonlinear influence. The interactions between meteorological factors, such as precipitation, and topographic factors, such as altitude, were important, with a q-value over 0.79. The results of this study provide some methodological support for the ecological conservation of the Tibetan Plateau, and at the same time establish a scientific and reasonable strategy for vegetation restoration.
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.