Abstract
Data association is of crucial importance to improve target tracking performance in many complex visual environments (non-linear dynamics, occlusions, etc). Usually, association effectiveness is based on prior information and observation category. However, association becomes difficult if targets are similar. Problems also arise in cases of missing data, complex motions or deformations over time. To remedy, we propose a new method for data association, that uses the evolution of the dynamic model of targets. The main idea is to measure an adaptive geometric accuracy between possible trajectories of targets, by only using positions as information, that constitutes its main advantage.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.