Abstract

Cuprizone administration in mice provides a reproducible model of demyelination and spontaneous remyelination, and has been useful in understanding important aspects of human disease, including multiple sclerosis. In this study, we apply high spatial resolution quantitative MRI techniques to establish the spatio-temporal patterns of acute demyelination in C57BL/6 mice after 6 weeks of cuprizone administration, and subsequent remyelination after 6 weeks of post-cuprizone recovery. MRI measurements were complemented with Black Gold II stain for myelin and immunohistochemical stains for associated tissue changes. Gene expression was evaluated using the Allen Gene Expression Atlas. Twenty-five C57BL/6 male mice were split into control and cuprizone groups; MRI data were obtained at baseline, after 6 weeks of cuprizone, and 6 weeks post-cuprizone. High-resolution (100μm isotropic) whole-brain coverage magnetization transfer ratio (MTR) parametric maps demonstrated concurrent caudal-to-rostral and medial-to-lateral gradients of MTR decrease within corpus callosum (CC) that correlated well with demyelination assessed histologically. Our results show that demyelination was not limited to the midsagittal line of the corpus callosum, and also that opposing gradients of demyelination occur in the lateral and medial CC. T2-weighted MRI gray/white matter contrast was strong at baseline, weak after 6 weeks of cuprizone treatment, and returned to a limited extent after recovery. MTR decreases during demyelination were observed throughout the brain, most clearly in callosal white matter. Myelin damage and repair appear to be influenced by proximity to oligodendrocyte progenitor cell populations and exhibit an inverse correlation with myelin basic protein gene expression. These findings suggest that susceptibility to injury and ability to repair vary across the brain, and whole-brain analysis is necessary to accurately characterize this model. Whole-brain parametric mapping across time is essential for gaining a real understanding of disease processes in-vivo. MTR increases in healthy mice throughout adolescence and adulthood were observed, illustrating the need for appropriate age-matched controls. Elucidating the unique and site-specific demyelination in the cuprizone model may offer new insights into in mechanisms of both damage and repair in human demyelinating diseases.

Highlights

  • Cuprizone [bis-cyclohexanone-oxaldihydrazone] is a low molecular weight copper chelator that induces reversible demyelination in both gray and white matter in the murine brain when added to chow in low concentrations for short periods

  • The med-corpus callosum (CC) corresponds to the centermost region demarcated by the apex of the lateral arches, consistent with similar studies; latCC includes all magnetic resonance imaging (MRI)-visible white matter distal to the apex of the lateral arches

  • We adopted this approach for two primary reasons: (1) various atlases disagree on location and extent of external capsule (EC); (2) while distinguishable on histology, MRI partial volume effects limit differentiation of CC from small adjacent white matter structures

Read more

Summary

Introduction

Cuprizone [bis-cyclohexanone-oxaldihydrazone] is a low molecular weight copper chelator that induces reversible demyelination in both gray and white matter in the murine brain when added to chow in low concentrations for short periods. First described as a neurotoxin in rodents in the 1960’s, cuprizone reliably produces toxic effects including demyelination, hydrocephalus, and astrogliosis.[1,2] The cuprizone mouse captures some aspects of multiple sclerosis (MS), providing a model of demyelination and spontaneous remyelination. While cuprizone administration in the mouse has become a common approach used to study demyelination and remyelination processes relevant to human disease, the mechanism of cuprizone action and subsequent oligodendrocyte death is not well understood. Because histological analyses are invasive and time-intensive, non-invasive imaging techniques are well suited to complement histology and provide a more comprehensive perspective of pathophysiology, with respect to longitudinal studies. Careful histological analyses are important to validate emerging quantitative and semi-quantitative in-vivo imaging techniques

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.