Abstract
PM2.5 is the main cause of haze pollution, and studying its spatio-temporal distribution and driving factors can provide a scientific basis for prevention and control policies. Therefore, this study uses air quality monitoring information and socioeconomic data before and during the COVID-19 outbreak in 18 prefecture-level cities in Henan Province from 2017 to 2020, using spatial autocorrelation analysis, ArcGIS mapping, and the spatial autocorrelation analysis. ArcGIS mapping and the Durbin model were used to reveal the characteristics of PM2.5 pollution in Henan Province in terms of spatial and temporal distribution characteristics and analyze its causes. The results show that: (1) The annual average PM2.5 concentration in Henan Province fluctuates, but decreases from 2017 to 2020, and is higher in the north and lower in the south. (2) The PM2.5 concentrations in Henan Province in 2017-2020 are positively autocorrelated spatially, with an obvious spatial spillover effect. Areas characterized by a high concentration saw an increase between 2017 and 2019, and a decrease in 2020; values in low-concentration areas remained stable, and the spatial range showed a decreasing trend. (3) The coefficients of socio-economic factors that increased the PM2.5 concentration were construction output value > industrial electricity consumption > energy intensity; those with negative effects were: environmental regulation > green space coverage ratio > population density. Lastly, PM2.5 concentrations were negatively correlated with precipitation and temperature, and positively correlated with humidity. Traffic and production restrictions during the COVID-19 epidemic also improved air quality.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International journal of environmental research and public health
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.