Abstract

BackgroundSpatial and temporal malaria risk maps are essential tools to monitor the impact of control, evaluate priority areas to reorient intervention approaches and investments in malaria endemic countries. Here, the analysis of 36 years data on Plasmodium falciparum prevalence is used to understand the past and chart a future for malaria control in Kenya by confidently highlighting areas within important policy relevant thresholds to allow either the revision of malaria strategies to those that support pre-elimination or those that require additional control efforts.MethodsPlasmodium falciparum parasite prevalence (PfPR) surveys undertaken in Kenya between 1980 and 2015 were assembled. A spatio-temporal geostatistical model was fitted to predict annual malaria risk for children aged 2–10 years (PfPR2–10) at 1 × 1 km spatial resolution from 1990 to 2015. Changing PfPR2–10 was compared against plausible explanatory variables. The fitted model was used to categorize areas with varying degrees of prediction probability for two important policy thresholds PfPR2–10 < 1% (non-exceedance probability) or ≥ 30% (exceedance probability).Results5020 surveys at 3701 communities were assembled. Nationally, there was an 88% reduction in the mean modelled PfPR2–10 from 21.2% (ICR: 13.8–32.1%) in 1990 to 2.6% (ICR: 1.8–3.9%) in 2015. The most significant decline began in 2003. Declining prevalence was not equal across the country and did not directly coincide with scaled vector control coverage or changing therapeutics. Over the period 2013–2015, of Kenya’s 47 counties, 23 had an average PfPR2–10 of < 1%; four counties remained ≥ 30%. Using a metric of 80% probability, 8.5% of Kenya’s 2015 population live in areas with PfPR2–10 ≥ 30%; while 61% live in areas where PfPR2–10 is < 1%.ConclusionsKenya has made substantial progress in reducing the prevalence of malaria over the last 26 years. Areas today confidently and consistently with < 1% prevalence require a revised approach to control and a possible consideration of strategies that support pre-elimination. Conversely, there remains several intractable areas where current levels and approaches to control might be inadequate. The modelling approaches presented here allow the Ministry of Health opportunities to consider data-driven model certainty in defining their future spatial targeting of resources.

Highlights

  • Spatial and temporal malaria risk maps are essential tools to monitor the impact of control, evaluate priority areas to reorient intervention approaches and investments in malaria endemic countries

  • The World Health Organization Global technical strategy for malaria 2016–2030 [1] requires National Malaria Control Programmes (NMCPs) to stratify their sub-national malaria burden based on the analysis of past and contemporary malaria data, risk factors and the environment

  • Spatial–temporal mean PfPR2–10 predictions 1990–2015 The final survey data was represented by 5020 surveys within 5 km2 at 3701 unique locations covering malaria parasite examinations of over 578,281 blood samples, between 1980 and 2015

Read more

Summary

Introduction

Spatial and temporal malaria risk maps are essential tools to monitor the impact of control, evaluate priority areas to reorient intervention approaches and investments in malaria endemic countries. The first attempt to apply the principles of model based geostatistics (MBG) to malaria prevalence survey data from Kenya between 1975 and 2009, at 2095 unique locations was undertaken to provide a risk map for the year 2009 [7]. This map was used to define Kenya’s unmet needs for vector control [8], future strategic planning [9] and funding [10] from 2010. This proved to be a milestone example of how applications of MBG can influence health policy planning and value for money allocation of resources to areas most in need

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.