Abstract
Spatially resolved X-ray diffraction (SRXRD) is used to map the α → β → α phase transformation in the heat-affected zone (HAZ) of commercially pure titanium gas tungsten arc welds. In situ SRXRD experiments were conducted using a 180-µm-diameter X-ray beam at the Stanford Synchrotron Radiation Laboratory (SSRL) (Stanford, CA) to probe the phases present in the HAZ of a 1.9 kW weld moving at 1.1 mm/s. Results of sequential linear X-ray diffraction scans made perpendicular to the weld direction were combined to construct a phase transformation map around the liquid weld pool. This map identifies six HAZ microstructural regions between the liquid weld pool and the base metal: (1) α-Ti that is undergoing annealing and recrystallization; (2) completely recrystallized α-Ti; (3) partially transformed α-Ti, where α-Ti and β-Ti coexist; (4) single-phase β-Ti; (5) back-transformed α-Ti; and (6) recrystallized α-Ti plus back-transformed α-Ti. Although the microstructure consisted predominantly of α-Ti, both prior to and after the weld, the crystallographically textured starting material was altered during welding to produce different α-Ti textures within the resulting HAZ. Based on the travel speed of the weld, the α → β transformation was measured to take 1.83 seconds during heating, while the β → α transformation was measured to take 0.91 seconds during cooling. The α → β transformation was characterized to be dominated by long-range diffusional growth on the leading (heating) side of the weld, while the β → α transformation was characterized to be predominantly massive on the trailing (cooling) side of the weld, with a massive growth rate on the order of 100 µm/s.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.