Abstract

The conditions providing the formation of periodic vortex lattices of an interference nature in an atomic Bose-Einstein condensate (i.e., in the absence of rotation of the condensate) are determined. Spatially periodic exact solutions of the nonlocal nonlinear Schrodinger equation (the generalized Gross-Pitaevskii equation) that describes the Bose-Einstein condensate of a dilute gas of alkali metal atoms with due regard for the nonlocality of interatomic interactions are obtained in the form of a set of two or three plane waves. It is shown that periodic vortex lattices can be produced in interference experiments with a Bose-Einstein condensate of a dilute gas of alkali metal atoms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.