Abstract

Cement production processes are important sources of unintentionally produced persistent organic pollutants (UP-POPs), such as polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs), and polychlorinated biphenyls (PCBs). The emissions of PCDD/Fs and PCBs in the stack flue gases from eight typical cement plants in China were investigated in this study, including one wet process rotary kiln, three dry process rotary kilns and four vertical shaft kilns. PCBs exhibited relatively higher mass concentrations with the dioxin-like (dl) and indicator PCBs of 0.14–17.36 and 0.42–12.90 ng/Nm3, respectively. However, PCDD/Fs contributed most to the total toxic equivalent concentrations, with the proportions exceeding 90%. The international toxicity equivalency (I-TEQ) concentrations of PCDD/Fs varied greatly from 0.01 to 0.46 ng I-TEQ/Nm3 in stack gases, two of which exceeded the exhaust gas concentration limit of 0.1 ng I-TEQ/Nm3 established by the European Union Directive. In weight units, 1,2,3,4,6,7,8-HpCDF was the most abundant congener in the stack gases from various types of cement kilns, with the factions of 17.0–27.8%. TCDFs and PeCDFs were the first two most abundant homologue groups. 2,3,4,7,8-PeCDF was the largest contributor to the total I-TEQ. The emission factors of PCDD/Fs and PCBs in the eight cement kilns were estimated to be 0.01–1.35 μg I-TEQ/t clinker and 8.20 × 10−4∼8.23 × 10−2 μg World Health Organization TEQ (W-TEQ)/t clinker, respectively. No obvious differences of the PCDD/F and PCB emission factors were found among the varied cement production technologies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.