Abstract

Forests play a key role in the global carbon (C) cycle through multiple interactions between above-ground and soil microbial communities. Deeper insights into the soil microbial composition and diversity at different spatial scales and soil depths are of paramount importance. We hypothesized that in a homogeneous above-ground tree cover, the heterogeneous distribution of soil microbial functional diversity and processes at the small scale is correlated with the soil’s chemical properties. From this perspective, in a typical Mediterranean holm oak (Quercus ilex L.) peri-urban forest, soil carbon dioxide (CO2) emissions were measured with soil chambers in three different plots. In each plot, to test the linkage between above-ground and below-ground communities, soil was randomly sampled along six vertical transects (0–100 cm) to investigate soil physico-chemical parameters; microbial processes, measured using Barometric Process Separation (BaPS); and structural and functional diversity, assessed using T-RFLP and qPCR Real Time analyses. The results highlighted that the high spatial variability of CO2 emissions—confirmed by the BaPS analysis—was associated with the microbial communities’ abundance (dominated by bacteria) and structural diversity (decreasing with soil depth), measured by H′ index. Bacteria showed higher variability than fungi and archaea at all depths examined. Such an insight showed the clear ecological and environmental implications of soil in the overall sustainability of the peri-urban forest system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.