Abstract

Neurogenesis plays a role in hippocampus-dependent learning and impaired neurogenesis may correlate with cognitive deficits in Alzheimer's disease. Spatial training influences the production and fate of newborn cells in hippocampus of normal animals, whereas the effects on neurogenesis in Alzheimer-like animal are not reported until now. Here, for the first time, we investigated the effect of Morris water maze training on proliferation, survival, apoptosis, migration, and differentiation of newborn cells in β-amyloid–treated Alzheimer-like rats. We found that spatial training could preserve a short-term survival of newborn cells generated before training, during the early phase, and the late phase of training. However, the training had no effect on the long-term survival of mature newborn cells generated at previously mentioned 3 different phases. We also demonstrated that spatial training promoted newborn cell differentiation preferentially to the neuron direction. These findings suggest a time-independent neurogenesis induced by spatial training, which may be indicative for the cognitive stimulation in Alzheimer's disease therapy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.