Abstract
Vehicle trajectory data collected via GPS-enabled devices have played increasingly important roles in estimating network-wide traffic, given their broad spatial-temporal coverage and representativeness of traffic dynamics. This paper exploits taxi GPS data, license plate recognition (LPR) data, and geographical information for reconstructing the spatial and temporal patterns of urban traffic emissions. Vehicle emission factor models are employed to estimate emissions based on taxi trajectories. The estimated emissions are then mapped to spatial grids of urban areas to account for spatial heterogeneity. To extrapolate emissions from the taxi fleet to the whole vehicle population, we use Gaussian process regression (GPR) models supported by geographical features to estimate the spatially heterogeneous traffic volume and fleet composition. Unlike previous studies, this paper utilizes the taxi GPS data and LPR data to disaggregate vehicle and emission characteristics through space and time in a large-scale urban network. The results of a case study in Hangzhou, China, reveal high-resolution spatio-temporal patterns of traffic flows and emissions, and identify emission hotspots. This study provides an accessible means of inferring the environmental impact of urban traffic with multi-source urban data that are now widely available in urban areas.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Transportation Research Part C: Emerging Technologies
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.