Abstract

Arizona residents have been dealing with the suspended particulate matter caused health issues for a long time due to Arizona’s arid climate. The state of Arizona is vulnerable to dust storms, especially in the monsoon season because of the anomalies in wind direction and magnitude. In this study, a high-resolution Weather Research and Forecasting (WRF) model coupled with a chemistry module (WRF-Chem) was simulated to compute the particulate matter spatiotemporal distribution as well as the climatic parameters for the state of Arizona. Subsequently, Ordinary Least Square (OLS), spatial lag, spatial error, and Geographically Weighted Regression (GWR) techniques were utilized to develop predictive models based on the climatic indicators that impacted the formation and dispersion of the particulate matter during dust storms. Census tracts were adopted to create local spatial averages for the chosen variables. Terrain height, temperature, wind speed, and vegetation fraction were designated as the most significant variables, whereas base state and perturbation pressures, planetary boundary layer height and soil moisture were adopted as supplementary variables. The determination coefficient for OLS, spatial lag, spatial error, and GWR models peaked at 0.92, 0.93, 0.96, and 0.97, respectively. These models provide a better understanding of the current distribution of the particulate matter and can be used to forecast future trends.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.