Abstract

Conventional approach to detect the internal defect of a component needs sensors to mark the “zero” positions, which is time-consuming and lowers down the detecting efficiency. In this study, we proposed a novelty approach that uses spatial spectroscopy to detect internal defect of objects without zero-position sensors. Specifically, the spatial variation wave of distance between the detecting source and object surface is analyzed, from which a periodical cycle is determined with the correlative approaches. Additionally, a wavelet method is adopted to reduce the noise of the periodic distance signal. This approach is validated by the ultrasound detection of a component with round cross section and elliptical shape in axis. The experimental results demonstrate that this approach greatly saves the time spent on the judgment of a complete cycle and improves the detecting efficiency of internal defect in the component. The approach can be expanded to other physical methods for noninvasive detection of internal defect, such as optical spectroscopy or X-ray scanning, and it can be used for hybrid medium, such as biological tissues.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.