Abstract

The Schroedinger eigenmaps (SE) algorithm using spatial and spectral information has been applied to supervised classification of hyperspectral imagery (HSI). We have previously introduced the use of SE in spectral target detection problems. The original SE-based target detector was built on the spectral information encoded in the Laplacian and Schroedinger operators. The original SE-based detector is extended such that spatial connectivity of target-like pixels is explored and encoded into the Schroedinger operator using a “knowledge propagation” scheme. The modified SE-based detector is applied to two HSI data sets that share similar target materials. Receiver operating characteristic curves and rates of detection and false alarm at object level are used as quantitative metrics to assess the detector. In addition, the Schroedinger embedding performance in target detection is compared against the performances of principal component embedding and the Laplacian embedding. Results show that the SE-based detector with spatial–spectral features outperforms the other considered approaches.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.