Abstract
Hyperspectral (HS) videos can describe objects at the material level due to their rich spectral bands, which are more conducive to object tracking compared with color videos. However, the existing HS object trackers cannot make good use of deep-learning models to mine their semantic information due to limited annotation data samples. Moreover, the high-dimensional characteristics of HS videos makes the training of a deep-learning model challenging. To address the above problems, this paper proposes a spatial–spectral cross-correlation embedded dual-transfer network (SSDT-Net). Specifically, first, we propose to use transfer learning to transfer the knowledge of traditional color videos to the HS tracking task and develop a dual-transfer strategy to gauge the similarity between the source and target domain. In addition, a spectral weighted fusion method is introduced to obtain the inputs of the Siamese network, and we propose a spatial–spectral cross-correlation module to better embed the spatial and material information between the two branches of the Siamese network for classification and regression. The experimental results demonstrate that, compared to the state of the art, the proposed SSDT-Net tracker offers more satisfactory performance based on a similar speed to the traditional color trackers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.