Abstract

Sensory systems change their sensitivity based on recent stimuli to adjust their response range to the range of inputs and to predict future sensory input. Here, we report the presence of retinal ganglion cells that have antagonistic plasticity, showing central adaptation and peripheral sensitization. Ganglion cell responses were captured by a spatiotemporal model with independently adapting excitatory and inhibitory subunits, and sensitization requires GABAergic inhibition. Using a simple theory of signal detection, we show that the sensitizing surround conforms to an optimal inference model that continually updates the prior signal probability. This indicates that small receptive field regions have dual functionality--to adapt to the local range of signals but sensitize based upon the probability of the presence of that signal. Within this framework, we show that sensitization predicts the location of a nearby object, revealing prediction as a functional role for adapting inhibition in the nervous system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.